ابزار دقیق و اتوماسیون صنعتی

مقالات و آموزش ابزار دقیق و اتوماسیون صنعتی

ابزار دقیق و اتوماسیون صنعتی

مقالات و آموزش ابزار دقیق و اتوماسیون صنعتی

ابزار دقیق و اتوماسیون صنعتی

مشاوره، فروش و تامین تجهیزات ابزار دقیق و اتوماسیون صنعتی

http://yekan-co.ir

تلفن :  88196217-021

همراه : 09191545127

info [at] yekan-co.ir

پایش لرزش در ماشین آلات دوار (قسمت اول)

| شنبه, ۱۷ مهر ۱۳۹۵، ۱۰:۰۴ ق.ظ

در این مقاله تلاش شده است تا از منظر ابزاردقیق به بررسی مبحث لرزش و روش های اندازه گیری آن پرداخته شود. وجود لرزش با اندازه ی غیرمجاز در ماشین آلات دوار از قبیل پمپ ها، توربین ها، موتورها و غیره باعث ایجاد لطمات جبران ناپذیری به این ماشین آلات  شده و از این رو مسأله ی سنجش، و اندازه گیری آن از اهمیت بسبار بالایی برخوردار است که به صراحت می توان گفت نادیده گرفتن این پدیده و یا عدم توجه کافی به چگونگی انتخاب عوامل مربوطه از جمله حسگرو محل نصب آنها، نحوه ی پیکربندی پایش لرزش و ... باعث عواقب سنگین و گاهی توقف طولانی مدت ماشین آلات و فرآیند تولید می شود. در این مقاله با معرفی انواع حسگرهای لرزش به مقایسه ی اجمالی آن ها پرداخته شده و چگونگی اندازه گیری لرزش و علل پدید آمدن آن بیان شده است.

واژه­های کلیدی

لرزش، اندازه گیری، پایش، ماشین آلات دوار

 

1. مقدمه

مبحث ارتعاش یا لرزش یکی از موضوعات بسیار مهم در ماشین آلات دوار است که در بعضی مواقع  صدمات غیر قابل جبرانی را در پی دارد. به همین دلیل تحلیل، سنجش و بررسی علل لرزش از موضوعاتی است که در صنایع دارای ماشین آلات دوار از قبیل توربین، ژنراتور، موتور، پمپ، کمپرسور و... بسیار به آن اهمیت داده می­شود و نسبت به حفاظت ماشین آلات در مقابل این پدیده تلاش بسیاری به عمل می آید.  این مقاله در حد مقدور به بررسی اجمالی پدیده­ی لرزش پرداخته و چگونگی اندازه گیری آن و انتخاب حسگر، محل نصب مناسب و برخی نکات دیگر در این خصوص را در حد کافی بیان نموده است.

2. تعاریف و اندازه گیری لرزش

در سامانه­ های دینامیک که جسم قابلیت کسب یا از دست دادن انرژی را داراست، نوسان به وجود می آید که به آن ارتعاش می گویند. ارتعاش در ساده ترین شکل بصورت حرکت نوسانی تعریف می شود که به آن لرزش می گویند. [1]

2-1. پارامترهای اندازه گیری لرزش

معمولاً سه پارامتر در ارتباط با لرزش، اندازه گیری می شوند که در ادامه این پارامترها تشریح شده­اند:

الف.  فرکانس: تعداد دفعاتی که ماشین در واحد زمان (دقیقه/ثانیه) می لرزد.

ب. دامنه ی لرزش: این مقدار معمولاً با مقیاس های هزارم اینچ، میکرون، اینچ در ثانیه و g که بستگی به چگونگی اندازه گیری دارد نشان داده می شود.

 

ارتعاشات

شکل 1. شکل یک تناوب سیگنال هارمونیک

                                                

معمولاً اندازه ی جابجایی کامل جرم به عقب و جلو، مقدار لرزش نامیده می شود. واحد اندازه گیری جابجایی در سامانه­ی انگلیسی و متریک در ادامه آمده است و فرمول های تبدیل آن نیز به صورت زیر می باشد:

1mil=0.001 inch

1 micron= 0.001 mm

1 mil= 25.4 micron

1 micron= 0.039 mil

میران جابجایی بر حسب میکرومتر و میل، سرعت بر حسب میلیمتر بر ثانیه یا اینچ بر ثانیه و شتاب بر حسب متر بر مجذور ثانیه یا g یا اینچ بر مجذور ثانیه بیان می شود.

ج.  فاز لرزش: چگونگی وضعیت سیگنال لرزش نسبت به یک نقطه بوده و همیشه نسبت به یک مرجع سنجیده می شود و توالی حرکت (تقدم/ تأخر) را نسبت به آن نقطه ی ثابت نشان می دهد. فاز لرزش معمولاً توسط  فلاش لامپ  یا فتوسل الکترونیکی اندازه گیری شده و واحد آن درجه می باشد. معمولاً مقدار لرزش (دامنه) را به سه روش جابجایی، سرعت و شتاب، اندازه گیری می کنند.

به عنوان مثال در سامانه­ی وزنه و فنر که:

 

ارتعاشات                         

 

 

 

AVG

RMS

PEAK

P-P

 

142/3

828/2

5/0

1

P-P

571/1

414/1

1

5/0

PEAK

5/1

1

0.707

354/0

RMS

1

9/0

636/0

318/0

AVG

 

 

جدول 1. جدول تبدیل واحد های مختلف

 

2-2. اندازه گیری سرعت لرزش

در این سیستم بنا به تعریف، سرعت نوسان جرم را سرعت لرزش می گویند. به عبارت دیگر در سامانه­ی وزنه و فنر، سرعت حرکت وزنه از لحظه ی شروع تا زمانی که به لحظه ی سکون اولیه ی خود می رسد را به عنوان سرعت حرکت (P-0) در نظر می­گیرند و واحد سنجش آن اینچ بر ثانیه و یا میلی متر بر ثانیه می باشد.

         

ارتعاشات

شکل 3 سامانه ی وزنه  و فنر

  

سیگنال ارتعاش در محدوده ی فرکانسی 10 تا 2000 هرتز (600 تا 120000دور در دقیقه) تقریباً وابسته به فرکانس نیست حتی اگر فرکانس تا 300000 دور در دقیقه تولید شود به شرط آن که مقدار Roll Off  بالاتر از 120000 دور در دقیقه در نظر گرفته شود می توان از روش اندازه گیری سرعت استفاده نمود. این روش در طیف وسیع تری از فرکانس نسبت به دو روش جابجایی و شتاب کاربرد دارد. از این رو در فرکانس های کمتر از 120000 دور در دقیقه روش اندازه گیری سرعت بهترین روش جهت اندازه گیری لرزش ماشین آلات دوار می باشد.

حسگرهای سرعت ارتعاشی اولین نوع حسگرهای لرزش سنج بدنه هستند که برای اندازه گیری لرزش بدنه ی ماشین مورد استفاده قرار می­گیرند. این حسگرها سرعت ارتعاشی مطلق بدنه ی ماشین را اندازه گیری می کنند. این حسگرها (سرعت سنج و شتاب سنج) برای اندازه گیری لرزش، خود باید مرتعش گردند به همین لحاظ مسأله ی فرکانس طبیعی خود حسگر اهمیت پیدا می کند. به عبارتی دیگر خروجی حسگر باید نسبت به کلیه ی فرکانس ها یکسان و برابر با حساسیت تعیین شده برای حسگر باشد. بنابراین محدوده ی فرکانسی قابل استفاده برای حسگر محدوده ی خارج از ناحیه ی فرکانس طبیعی حسگر است. در ناحیه ای که پاسخ فرکانسی آن اصطلاحاً مسطح است.

سرعت سنج های لرزشی از یک هسته ی مرتعش حاوی سیم پیچ که توسط فنر وسط یک میدان مغناطیسی معلق شده است تشکیل می گردند. ارتعاش وارد شده به بدنه ی حسگر از طریق فنرها به هسته رسیده و سرعت لرزشی هسته نسبت به بدنه متناسب با سرعت لرزشی بدنه ی حسگر است.

 

                              

شکل 4 .الف: یک حسگر شتاب سنج  ب: شماتیک داخلی یک حسگر شتاب سنج

 

نکته ی مهم در رابطه با این نوع حسگرها این است که کارکرد این حسگر بالای فرکانس طبیعی آن است و محدوده ی بسیار بسته تری نسبت به شتاب سنج ها دارد (به عنوان نمونه بین 10 تا 1000 هرتز). اما ویژگی مهم آن خروجی امپدانس پایین آن است که براحتی می توان آن را نمایش داد. به عبارتی این حسگر مانند یک ژنراتور عمل کرده و نیاز به تغذیه و یا تقویت ندارد و خروجی آن را می توان در سایر دستگاه ها به راحتی استفاده نمود. علاوه بر این سرعت ارتعاشی معیار اصلی ارزیابی شدت ارتعاش ماشین ها است و شاید به همین دلایل است که هنوز از این نوع حسگرها به ویژه برای مقاصد حفاظتی، بسیار استفاده می شود. اما مشکل وجود المان های مرتعش در این نوع حسگر معمولاً باعث کاهش عمر آن شده و باعث خرابی زودتر آن نسبت به سایر حسگرها می گردد. بنابراین در جاهایی که از این نوع حسگرها استفاده می شود بازرسی و کالیبراسیون دوره ای برای آنها، حداقل هر یک سال یک بار الزامی است.

 

2-3.  اندازه گیری شتاب لرزش

معمولاً در مواردی که فرکانس لرزش زیاد باشد (بیش از KHz 120)  از این روش استفاده می گردد. این روش جهت تحلیل و عیب یابی لرزش ماشین آلات روش بسیار مناسبی است و در سنجش لرزش بدنه ی ماشین آلات دوار مورد استفاده قرار می گیرد. شتاب سنج ها عمومی ترین حسگرهای اندازه گیری لرزش های بدنه هستند. امروزه این نوع حسگرها به صورت گسترده ای جای حسگرهای سرعت سنج را گرفته و علاوه بر این که در تمامی سامانه های قابل حمل از شتاب سنج استفاده می شود، در سامانه های نصب دایم حفاظتی/پایش، این حسگر به طور وسیعی مورد استفاده قرار می گیرد.

در یک شتاب سنج از عکس العمل یک جرم مشخص به شتاب وارد بر حسگر استفاده شده و نیرویی بر المان پیزوالکتریک وارد می شود. المان پیزوالکتریک متناسب با نیروی وارد برآن، بارهای الکتریکی در دو سطح خود ایجاد می کند. در طرح اولیه ی شتاب سنج ها، این بار الکتریکی که در حد  پیکوکولن می باشد به عنوان خروجی حسگر استفاده می شد. در طرح های امروزی با استفاده از تقویت کننده های درون حسگر، این بار الکتریکی تقویت شده و بصورت mV به عنوان خروجی حسگر استفاده می شود.

2-4.  اندازه گیری جابجایی لرزش

این روش جهت اندازه گیری فاصله  و تغییرات فاصله پروب نسبت به محور گردان ماشین بوده و حسگرهای استفاده شده در این روش از نوع پروب های غیرتماسی می باشند. عمومی ترین حسگری که برای اندازه گیری جابجایی ارتعاشی در صنعت مورد استفاده قرار می گیرد از نوع حسگرهای جریان گردابی غیرتماسی هستند که علاوه بر قابلیت اندازه گیری جابجایی های لرزش (به صورت سیگنال AC) توانایی اندازه گیری جابجایی ثابت (به صورت سیگنال DC) را نیز دارند که معمولاً اندازه گیری جابجایی برای اندازه گیری تغییرات محوری روتور چرخنده ی ماشین آلات استفاده می شود.

 

برای مشاهده بخش دوم مقاله اینجا را کلیک نمایید.

 

منبع:

کاظم امین زاده1، رسول ایرانی2، احمد امین زاده3

 

1کارشناس ارشد ابزار دقیق شرکت بهره برداری نفت و گاز گچساران

2کارشناس ابزار دقیق شرکت بهره برداری نفت و گاز گچساران

3 دانشجوی مهندسی مکانیک دانشگاه سمنان

آموزش انتخاب سنسور القایی (پراکسیمیتی سوییچ)

| دوشنبه, ۱۲ مهر ۱۳۹۵، ۰۹:۵۴ ق.ظ

امروزه سوییچ های پراکسیمیتی (proximity switch) یا سنسور های القایی بعنوان جزء جداناپذیر  تجهیزات اتوماسیون در پلنت های صنعتی بشمار میروند. بدون حضور آن ها بخش هایی از ماشین آلات و فرآیند ها، ناتوان از عملکرد صحیح خود هستند. بنابراین انتخاب درست یک سنسور جدید یا جایگزین برای مهندسان امری حیاتی است و نیازمند فهم کاملی از محیط اپلیکیشن ، طراحی سوییچ و روش های نصب می باشد.

 

سنسور مجاورتی و القایی

سوئیچ های پراکسیمیتی القایی چندین دهه است که در صنعت اتوماسیون برای تعیین موقعیت، تشخیص وجود یا عدم وجود، شمارش قطعه و بسیاری کاربرد های دیگر مورد استفاده هستند. آن ها فرو آلیاژ ها و فلزات غیر فرو را تشخیص میدهند.
در ساده ترین فرم، سوییچ پراکسیمیتی یک سیم پیچ القایی است که یک میدان مغناطیسی ایجاد می کند. وقتی که یک شیء فلزی وارد میدان گردد، این میدان مغناطیسی دچار آشفتگی و اختلال می شود. این خاصیت یه سنسور القایی اجازه میدهد تا بتواند اهدافی را بدون تماس در محدوده عملکرد خود تشخیص دهد.

تکنولوژی ساخت مداری سنسور های القایی در طول زمان از تکنولو‍ژی printed circuit board به flexible circuit film تغییر یافته است و اخیرا نیز از روش application-specific integrated circuits یا به اختصار ASICs استفاده می شود. استفاده از تکنولو‍‍ژی ASICs قابلیت پروگرام کردن مشخصات سنسور حتی پس از نصب آن در محل را ممکن ساخته است.

در تکنولوژی قبلی برای تنظیم فاصله سنسور تا هدف، وجود یک پتانسیومتر در طراحی سنسور ضروری بود اما در روش ASICs با حذف پتانسیومتر، فرایند تنظیم فاصله به شکل دقیقتر، پایدار تر و آسان تری توسط قابلیت برنامه ریزی در سنسور حاصل شده است. ضمن اینکه در روش جدید کارکرد های سوییچ به عنوان normally open و normally closed قابل برنامه ریزی شده است. بواسطه این قابلیت که به سنسور های جدید آمده است، از تنوع مدل ها کاسته شده و تولید کننده ها سعی می کنند تنها یک مدل با قابلیت برنامه ریزی تولید کنند که می توان از آن مدل در اپلیکیشن های مختلف استفاده کرد.

ملاحضات کلیدی در هنگام انتخاب

در هنگام انتخاب یک سوییچ پراکسیمیتی القایی، کاربر می بایست در ابتدا اندازه بهینه barrel/diameter ( طول و قطر) و فاصله قابل تشخیص (sensing distance )  را معین کند و سپس ملاحضات دیگری از جمله موارد زیر را در نظر بگیرد:

  • نوع فلزی که باید سنس شود
  • جنس بدنه سنسور: فلزی یا پلاستیکی
  • نصب به صورت محافظت شده یا بدون محافظت
  • سیم ارتباطی سر خود یا به صورت کانکتور های جداشونده
  • تغذیه مدار سنسور به صورت PNP یا NPN
  • خروجی به صورت Normally open یا Normally close
  • فرکانس سوئیچینگ
  • محدوده دمای کار سنسور
  • شرایط و الزامات محیط مورد استفاده

همانطور که عنوان کردیم دو پارامتر اصلی در انتخاب سنسور القایی، قطر سنسور و فاصله قابل سنس توسط آن است که این پارامتر دوم بر اساس فاصله رخ سنسور تا نقطه هدف محاسبه میشود.

 

سنسور غیر تماسی

سنسور های پراکسیمیتی القایی در سایزها، قطر های مختلف و حتی در شکل بدنه های مستطیل شکل برای اپلیکیشن های خاص تولید میشوند. قطر آنها از 3 میلی متر تا 30 میلیمتر متغیر است و ممکن است در اندازه های بزرگتر نیز تولید شوند. قطر سنسور تاثیر خیلی مهمی روی محدوده قابل سنسور می گذارد چون افزایش قطر سبب افزایش فاصله قابل سنس در سوییچ های القایی میشود. با این وجود، سایز  محصول هدف ( ما آن را target می نامیم )که باید تشخیص داده شود نیز باید در هنگام انتخاب قطر سنسور لحاظ شود.

در صورتی که بخواهیم کمی عملی تر صحبت کنیم اینطور میشود گفت که اگر سایز target در حدود 12 میلی متر باشد، یک سنسور با قطر 12 میلی متر انتخاب مناسب تری از یک سنسور با قطر 30 میلیمتر خواهد بود. چون هرچه قطر بیشتر باشد، قیمت سنسور بالاتر رفته، فضای بیشتری را اشغال کرده و به احتمال زیاد اشیایی  خارج از محدوده مورد نیاز را سنس خواهد کرد که این منجر به سوئیچینگ اشتباه در حین کار خواهد شد.

 

سنسورهای با قطر یکسان می توانند از نظر فاصله قابل تشخیص شان در سه مدل ساخته و فروخته شوند :

standard range 

extended range

triple range

حتی وقتی که یک target بزرگ داریم، به این مفهوم نیست که مجازیم از یک سوئیچ با قطر زیاد استفاده کنیم چون در برخی از اپلیکیشن ها فضای مناسب برای نصب فیزیکی سنسور وجود ندارد. طول سنسور نیز یک پارمتر قابل توجه است. در بسیاری از مواقع هرچه طول سنسور کوهتاهتر باشد بهتر است.

با وجود اینکه طول/قطر سنسور روی فاصله قابل تشخیص آن تاثیر گذار است، چندین فاصله قابل سنس بر هر طول قطر وجود دارد.  مزیت فاصله قابل سنس بلندتر این است که اگر target بزرگ باشد نیز قابل تشخیص خواهد بود با این وجود نباید این فاصله خیلی زیاد شود چون احتمال خطا نیز بالا خواهد رفت.

داشتن بدنه محافظ/ شیلد دار (flush-mount ) یا عدم وجود بدنه محافظ / بدون شیلد (non-flush ) در سنسور نیز روی فاصله قابل سنس اثر گذار است. این فاصله  برای یک سنسور شیلد شده استاندارد با قطر 12 میلی متر از حدود 2 میلی متر شروع می شود در حالی که برای سنسور شیلد نشده این فاصله از 4 میلی متر شروع میشود. برای همین قطر سنسور از نوع extended شیلد شده از 4 میی مترو در حالت شیلد نشده از 7 میلی متر شروع شده و  سنسور نوع triple شروع فاصله در مدل شیلد شده از 6 میلی متر و تا 8 میلی متر در نوع شیلد نشده خواهد بود.

سنسور های Flush-mount را گاهی اوقات با نام سنسور های Shielded یا Embeddable (تو کار ) نام میبرند

سنسورهای Proximatly یکی از انواع سنسورهای پرکاربرد در صنعت و مورد توجه در سوالات مصاحبه است که به چند گروه تقسیم می شوند:
۱-نوری     ۲-خازنی      ۳-القایی       ۴-التراسونیک  

 

کاربرد این سنسورها برای اشکارسازی حضور اجسام است.مثلا در شمارشگرهای اجسام یا یک محرک در مدارات یکی پس از دیگری یا یکی به جای دیگری بکارمی رود تاکنترلر بفهمد یک عمل به اتمام رسیده و یک عمل دیگر را دستگاه انجام دهد.  

 

1-نوری:این نمونه سنسورها به دو صورت کار می کنند.یا دو  سنسور که به صورت ارسال و دریافت در مقابل هم هستند یا یک سنسور که قابلیت ارسال و دریافت امواج فروسرخ را دارد و در مقابل آن یک اینه قرار گرفته است.در صورتی که جسم امواج ارسالی را قطع کند نور به فتو ترانزیستور گیرنده نمی رسد وخاموش می شود و در نتیجه یک پالس به کنترلر ارسال می شود(سطح صفر).

نکته:دستگاههایی که با این سنسورها کار می کنند در صورت بروز خطا پاک بودن اینه ها وصحت ارسال و دریافت سنسورها راچک کنید.

۲-خازنی:این سنسورها همانند خازنها کار می کند و در صورت حظور جسم در میدان آن ظرفیتش تعغیر می کند ویک سگنال به کنترلر ارسال می کند(سطح صفر).

نکته:سنسورهای خازنی قابلیت اشکار سازی حضور هرنوع جسمی را دارند(پلاستیک.چوب .فلز و..)

۳-القایی:این سنسورها همانند یک سلف کار میکنند واز خاصیت القایی آن جهت اشکار سازی حضور جسم استفاده می شود.میدان دارای یک دامنه وفرکانس معین است در صورت حضور جسم نوسانات و دامنه صفر می شود ویک سیگنال(سطح صفر)به کنترلر ارسال می شود.

نکته:سنسورهای القایی فقط اجسام رسانی مغناطیسی را حس می کنند.و قدرت اشکار سازی جسم آنها به اندازه دامنه میدان تولیدی(ولتاز تغذیه)بستگی دارد.

۴-التراسونیک:این سنسور ها از امواج ما فوق صوت که در محدوده ۲۰تا ۵۰کیلو هرتز است اسفاه می کند.

کاربرد مهم آن استفاده در سرعت سنج ها و اشکارسازی سطح مخازن و اندازه گیری فلو و... است.

نحوه کار آن به این صورت است که با محاسبات سرعت موج و اختلاف زمان بین ارسال و دریافت فاصله را اندازه گیری می کنند.این سنسورها به صورت پالسی کار میکنند مثلا در هر ۲ثانیه یکبار یک پالس ارسال و فاصله را اندازه کیری می کند.

لرزش سنج، ارتعاش سنج، پایش لرزش

| يكشنبه, ۱۱ مهر ۱۳۹۵، ۱۱:۱۴ ق.ظ

یکی از موارد مهم در صنایع مختلف کنترل لرزش و ارتعاش ابزارها و ماشین های دوار از قبیل توربین ژنراتور، پمپ، یاتاقان، موتور، فن و ... می باشد و در صورت گذر از حد معینی میتواند منجر به بروز حوادث و یا خرابی تجهیز شوند، به همین دلیل اندازه گیری ارتعاش قطعات و ماشین ها در صنایع مختلف از اهمیت بالایی برخوردار است، اندازه گیری ایننوسانت و لرزش ها بوسیله لرزش سنج و یا ارتعاش سنج انجام می گیرد. لرزش سنج ها کاربرد فراوانی در تعمیر و نگهداری تجهیزات صنعتی متحرک دارند، در مدل های پیشرفته تر لرزش سنج ها امکان انداره گیری سرعت، شتاب، بازه مکانی جابجایی وجود دارد.


لرزش نوسان مکانیکی حول یک نقطه تعادل میباشد .این نوسان میتواند تناوبی نظیر پاندول ساعت یا به صورت تصادفی در فواصل متفاوتی از زمان رخ دهد . لرزش سنج در حقیقت تجیهزی است که این نوسانات و لرزشها را برای ما اندازه گیری می کند . پارامترهائی نظیر تواتر یا فرکانس زمانی ، سرعت ، شتاب ، بازه مکانی جابجائی و در مدلهای پیشرفته تر میتواند حرکات نوسانی پیشرفته را آنالیز کند . استفاده از لرزش سنج یا ویبرومتر در تعمیر و نگهداری بسیاری از تجیهزات صنعتی متحرک کاربرد فراوان خواهد داشت . این نوسانات وقتی از محدوده تعریف شده‌‎ای بیشتر میشوند باعث بروز خسارات جبران ناپذیر به ادوات صنعتی خواهند گردید و بازرسی مدوام لرزش یا vibration موتورها و ادوات دوار امکان جلوگیری از ضایعات ناشی از آنها را خواهد داد.


حسگرهای لرزش سنج


حسگر ارتعاش سنج اولین المان مورد نیاز برای اندازه گیری ارتعاشات و ابزاری است که حرکت ارتعاشی را حس و آن را به یک سیگنال الکتریکی متناسب با حرکت ارتعاشی، تبدیل می کند. با تبدیل ارتعاشات به سیگنال الکتریکی، امکان ذخیره سازی، انجام پردازشهای بعدی و نیز مشاهده ی سیگنال از طریق دستگاه های الکترونیکی (تجهیزات داده برداری) فراهم می شود.
حسگرهای لرزش معمولاً به دو گروه تقسیم میشوند:


حسگرهای حرکت (ارتعاش) نسبی: ارتعاش توسط این حسگرها به صورت نسبی و نسبت به یک نقطه ی ثابت مرجع اندازه گیری می شود، مانند حسگرهای جریان گردابی

حسگرهای حرکت (ارتعاش) مطلق: مانند حسگرهای سرعت سنج و شتاب سنج


با توجه به مکانیزم کاری و پارامتر اصلی اندازه گیری، حسگرهای ارتعاش سنجی که امروزه در ماشین آلات دوار مورد استفاده قرار می گیرند عبارتند از:
1-جابجایی سنج
2- سرعت سنج
3- شتاب سنج

 

 حسگر (ترانسدیوسر) جابجایی

این حسگرها از نوع غیرتماسی هستند. این نوع حسگرها، حسگرهای جریان گردابی نیز نامیده میشوند.
اساس کار این نوع حسگر بر پایه ی تولید میدان مغناطیسی در یک سیم پیچ که در نوک حسگر تعبیه شده است می باشد. این میدان مغناطیسی، در محور دوران (شفت) که یک رسانای الکتریکی است باعث القای جریان گردابی می شود، هر چه رسانای الکتریکی به سیم پیج نزدیک تر باشد میزان جذب انرژی در رسانا بیشتر خواهد بود. سامانه ای که از حسگرهای جریان گردابی استفاده می نماید از یک نوسان ساز ، کابل ارتباطی و حسگر (پراب) تشکیل شده است.
نوسان ساز یک سیگنال فرکانس بالا (فرکانس رادیویی) برای ارسال به حسگر (پراب) تولید می کند و این سیگنال باعث ایجاد یک میدان مغناطیسی در اطراف حسگر می گردد. از آن جایی که میدان مغناطیسی فقط توسط اجسام هادی تحت تأثیر قرار می گیرد، تا زمانی که جسم هادی مقابل حسگر قرار نگیرد، هیچ تأثیری روی میدان مغناطیسی و به تبع آن هیچ کاهشی در سیگنالRF ایجاد نخواهد شد. با نزدیک شدن یک جسم هادی به ناحیه میدان مغناطیسی، این میدان در جسم هادی نفوذ پیدا کرده و باعث ایجاد جریان های گردابی در سطح آن شده و در نتیجه انرژی برگشتی و دامنه سیگنال RF کاهش مییابد، نوسان ساز و آشکارساز میزان پوش دامنه سیگنال RF را اندازه گیری میکند و متناسب با نقاط پیک آن، یک ولتاژ مستقیم ایجاد می نماید.

 

چگونگی عملکرد یک حسگر ارتعاش از نوع جابجایی سنج

جابجایی سنج


همان طور که در شکل بالا مشاهده میشود با توجه به دوران جسم هادی، دامنه پوش سیگنال RF نیز با توجه به جابجایی سطح هادی تغییر می کند و مانند آن است که یک سیگنال با مدولاسیون دامنه ایجاد شده است که حول یک سیگنال DC دارای نوسان است.
سیگنال DC موقعیت جسم و سیگنال AC میزان لرزش را نشان می دهد.
حسگر لرزش غیرتماسی دارای یک دامنه خطی کارکرد است و در زمان تنظیم و نصب آن و اتصال به سامانه نمایش دهنده باید به این نکته توجه داشت که حسگر در فاصله ای از جسم هادی/شفت قرار گیرد که نقطه کار آن در ناحیه ای قرار داشته باشد که در صورت حداکثر نوسان از محدوده خطی حسگر خارج نشود.
در زمان نصب باید دقت شود که نوک حسگر صدمه نبیند و در محل مورد نظر محکم بسته شده باشد. در ضمن مجموعه طول حسگر، کابل ارتباطی تا نوسانساز/ آشکارکننده توسط سازنده مشخص و کالیبره میشود و اگر به هر دلیلی این طول تغییر کند باید مجددا سامانه را کالیبره نمود.


حسگرهای اندازه گیری لرزش از نوع سرعت سنج


این نوع حسگر یا ترانسدیوسر بر روی بدنه جسم نصب میشوند و از این رو به آن حسگر تماسی یا بدنی می گویند. اساس عملکرد این حسگر به این صورت است که پس از نصب بر روی جسم، با توجه به میزان ارتعاش جسم، پوسته خارجی حسگر به ارتعاش در آمده و این حرکت، آهنربایی را که درون ترانسدیوسر تعبیه شده و به یک فنر متصل است به حرکت در آورده و جابجایی آهنربا باعث ایجاد یک ولتاژ در سیم پیچ میشود. با توجه به این که تغییرات ولتاژ با سرعت حرکت آهن ربا متناسب است می توان سرعت مطلق حرکت ارتعاشی جسم را از روی ولتاژ اندازه گیری نمود.
همان طور که در بالا اشاره شد برای اندازه گیری لرزش، حسگر باید مرتعش شود، از این رو لازم است فرکانس طبیعی حسگر مد نظر قرار گیرد، به عبارت دیگر حساسیت حسگر باید نسبت به کلیه فرکانس ها یکسان و برابر با مقدار تعیین شده برای حسگر باشد. بنابراین محدوده فرکانسی قابل استفاده برای حسگر، محدوده خارج از ناحیه فرکانس طبیعی حسگر بوده و در ناحیه ای قرار دارد که پاسخ فرکانسی آن اصطلاحاً مسطح است. 
این حسگرها به منبع تغذیه نیاز ندارند ولی نسبت به میدان های مغناطیسی خارجی حساس هستند.
حسگرهای اندازه گیری لرزش از نوع شتاب سنج
این حسگرها نیز از نوع تماسی هستند و در آنها از یک المان پیزوالکتریک برای تبدیل شتاب به سیگنال الکتریکی استفاده میشود. المان پیزوالکتریک متناسب با نیروی وارد بر آن، بارهای الکتریکی در دو سطح خود ایجاد میکند.
در طرح اولیهی شتاب سنجها، این بار الکتریکی که در حد پیکو کلمب است به عنوان خروجی حسگر استفاده می گردید. در طرح های امروزی با استفاده از تقویت کننده های درون حسگر، این بار الکتریکی تقویت شده و به صورت mv به عنوان خروجی حسگر استفاده میشود.
بطور معمول ترانسدیوسرهای شتاب دارای دو ساختار می باشند، نوع فشاری و نوع برشی. در نوع فشاری، پیزوالکتریک از پایه، جدا بوده و در نتیجه نسبت به حرارت از حساسیت کمتری برخوردار است.
اختلاف دیگری که بین دو نوع حسگر شتاب وجود دارد در استفاده از حالت دهندهی سیگنال است، بدین نحو که بعضی از حسگرهای شتاب مجهز به یک مدار الکترونیکی برای تقویت سیگنال هستند و چون این قسمت درون حسگر تعبیه شده است دمای کارکرد این حسگرها دارای محدودیت میباشد.
شتاب سنجها، لرزش مطلق را اندازه گیری میکنند. همچنین بعضی از سازندگان با قرار دادن یک مدار انتگرالگیر درون حسگر شتاب از آن برای نمایش میزان لرزش از نوع سرعت استفاده میکنند.


روش نصب حسگرهای لرزش
حسگرهای لرزش به روش های مختلف برروی ماشین ها نصب می شوند از جمله:
نصب دایمی: که حسگر با استفاده از پیچ و یا جوش به ماشین متصل میشود.
نصب مغناطیسی: که غالباً در تجهیزات اندازه گیری قابل حمل کاربری دارد.
روش دستی: که در این روش حسگر در هنگام استفاده با دست در محل مورد نظر نگهداشته میشود.


نکات مهم در انتخاب یک لرزش سنج


• قابلیت اندازه گیری لرزش، سرعت ، شتاب و جابجایی 
• محدوده فرکانس
• محدوده حساسیت نسبی
• زمان نمونه گیری
• محدوده دمای عملیاتی
• دقت اندازه گیری 
• دارا بودن پراب مجزا
• کارت حافظه، قابلیت ذخیره اطلاعات و اتصال به کامپیوتر

سنسور القایی

| يكشنبه, ۱۱ مهر ۱۳۹۵، ۱۰:۵۱ ق.ظ

سنسورهای القایی سنسورهای بدون تماس هستند که اساسا بر مبنای مدارهای مغناطیسی بنانهاده شده اند ،از این رو به آنهاسنسورهای الکترومغناطیسی نیز می گویند.

سنسور پراکسیمیتی

سنسور القایی چیست؟
سنسورهای القایی سنسورهای بدون تماس هستند که اساسا بر مبنای مدارهای مغناطیسی بنانهاده شده اند ،از این رو به آنها سنسورهای الکترومغناطیسی نیز می گویند.این سنسور ها  تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی ارسال نمایند.
در این مقاله به صورت مفصل به شرح جزئیات سنسور های القایی می پردازیم.
 
ساختمان سنسورهای القایی و اساس کار آنها:
ساختمان این سنسورها از سه طبقه تشکیل می شود:
اسیلاتور،اشمیت تریگر، تقویت خروجی.
قسمت اساسی این سنسورها از اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاُثیر قرار گیرد. این اسیلاتور باعث به وجود آمدن میدان الکترومغناطیسی درقسمت حساس سنسورمی شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد.از آنجا که طبقه دمدولاتور آشکارساز دامنه اسیلاتور است در نتیجه، کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود.کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود.
 
نحوه نصب سنسورهای القایی
سنسور های القایی با توجه به اینکه از نوع Flush یا Non-Flush باشند نصب متفاوتی دارند.
ا- نحوه نصب سنسورهای القاییFlush  :
سنسورهای (Flush (Shielded سنسورهائی هستند که قسمت حساس سنسور توسط پوسته فلزی محصور شده است. هرگاه دو یا چند عدد از این سنسورها همسطح روی بدنه فلزی دستگاه نصب شوند رعایت فواصل نصب الزامی می باشد.
2- نحوه نصب سنسورهای القائی Non-Flush:
در سنسورهای (Non-Flush (UnShielded قسمت حساس سنسور خارج از پوسته فلزی آن می باشد. فاصله سوئیچینگ این نوع سنسورها بیشتر از سنسورهای Flush می باشد. اما فرکانس سوئیچینگ آن در مقایسه کمتر است.

ترانسمیتر چیست؟

| شنبه, ۹ مرداد ۱۳۹۵، ۰۶:۳۱ ب.ظ

ترانسمیتر وسیله ای است که یک سیگنال الکتریکی ضعیف را دریافت کرده و به سطوح قابل قبول برای کنترلرها و مدارهای الکترونیکی تبدیل می کند ، مثلأیک حلقه فیدبک سیگنالی در سطح میکروولت یا میلی ولت یا میلی آمپرتولید می کند و این سیگنال ضعیف می تواند با عبور از ترانسمیتر به سیگنالی در سطوح صفر تا ده ولت و یا4 تا 20 میلی آمپر تبدیل شود. ترانسمیترها عمومأ از قطعاتی مثلop-amp برای تقویت وخطی کردن این سطوح ضعیف سیگنال استفاده می کند . سنسورها و ملحقات آنها مثل ترانسدیوسرها را در گروه های بزرگی تحت عنوان ابزار دقیق قرار داده و آنها را براساس نوع انرژی قابل استفاده و روشهای تبدیل ، دسته بندی می کنند.

  • موافقین ۰ مخالفین ۰
  • ۰۹ مرداد ۹۵ ، ۱۸:۳۱

سنسور چیست?

| شنبه, ۹ مرداد ۱۳۹۵، ۰۵:۲۴ ب.ظ

سنسور (sensor) یعنی حس کننده,و از کلمه  sens به معنی حس کردن گرفته شده و می تواند کمیت هایی مانند فشار ، رطوبت، دما، و … را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل کند.سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانندPLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جملهPLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد.

 

سنسور غیر تماسی

سنسورهای بدون تماس:

سنسورهای بدون تماس سنسورهائی هستند که با فاصله از جسم و بدون اتصال به آن عمل می کند مثلا  نزدیک شدن یک قطعه وجود آنرا حسکرده و فعال می شوند. این عمل به نحوی که در شکل زیر نشان داده شده است می تواندباعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم میگردد.

کاربرد این سنسورها در صنعت:

1- شمارش تولید: سنسورهای القائی، خازنی ونوری

2- کنترل حرکت پارچه و …: سنسور نوری و خازنی

3-تشخیص پارگی ورق: سنسورنوری

4- کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح

5- کنترل انحراف پارچه: سنسور نوری و خازنی

6- اندازه گیری سرعت: سنسور القائی و خازنی

7- کنترل تردد: سنسور نوری

8-اندازه گیری فاصله قطعه: سنسور القائی آنالوگ

مزایای سنسورهای بدون تماس:

سرعت سوئیچینگ(قطع و وصل)زیاد: سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، بطوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا  KHZ)25( کار می کنند.

طول عمر زیاد: بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار  وجرقه های حین کار و … دارای طول عمر زیادی هستند.

قابل استفاده در محیطهای مختلف با شرایط سخت کاری: سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و … قابل استفاده هستند.

عدم نیاز به نیرو و فشار: با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو وفشار نیازی نیست.

عدم ایجاد نویز در هنگام قطع وصل به دلیل استفاده ازنیمه هادی ها در طبقه خروجی، نویزهای مزاحم(Bouncing Noise)ایجاد نمی شود.

انواع سنسورهای مجاورتی :

1-نوری:این نمونه سنسورها به دو صورت کار می کنند.یا دو  سنسور که به صورت ارسال و دریافت در مقابل هم هستند یا یک سنسور که قابلیت ارسال و دریافت امواج فروسرخ را دارد و در مقابل آن یک اینه قرار گرفته است.در صورتی که جسم امواج ارسالی را قطع کند نور به فتو ترانزیستور گیرنده نمی رسد وخاموش می شود و در نتیجه یک پالس به کنترلر ارسال می شود(سطح صفر).

نکته:دستگاههایی که با این سنسورها کار می کنند در صورت بروز خطا پاک بودن اینه ها وصحت ارسال و دریافت سنسورها راچک کنید.

۲-خازنی:این سنسورها همانند خازنها کار می کند و در صورت حظور جسم در میدان آن ظرفیتش تعغیر می کند ویک سگنال به کنترلر ارسال می کند(سطح صفر).

نکته:سنسورهای خازنی قابلیت اشکار سازی حضور هرنوع جسمی را دارند(پلاستیک.چوب .فلز و..)

۳-القایی:این سنسورها همانند یک سلف کار میکنند واز خاصیت القایی آن جهت اشکار سازی حضور جسم استفاده می شود.میدان دارای یک دامنه وفرکانس معین است در صورت حضور جسم نوسانات و دامنه صفر می شود ویک سیگنال(سطح صفر)به کنترلر ارسال می شود.

نکته:سنسورهای القایی فقط اجسام رسانی مغناطیسی را حس می کنند.و قدرت اشکار سازی جسم آنها به اندازه دامنه میدان تولیدی(ولتاز تغذیه)بستگی دارد.

۴-التراسونیک:این سنسور ها از امواج ما فوق صوت که در محدوده ۲۰تا ۵۰کیلو هرتز است اسفاه می کند.

کاربرد مهم آن استفاده در سرعت سنج ها و اشکارسازی سطح مخازن و اندازه گیری فلو و… است.

نحوه کار آن به این صورت است که با محاسبات سرعت موج و اختلاف زمان بین ارسال و دریافت فاصله را اندازه گیری می کنند.این سنسورها به صورت پالسی کار میکنند مثلا در هر ۲ثانیه یکبار یک پالس ارسال و فاصله را اندازه کیری می کند.

5- سنسورتشخیص کد رنگ:تشخیص نوار رنگی کاغذ های بسته بندی

  • موافقین ۰ مخالفین ۰
  • ۰۹ مرداد ۹۵ ، ۱۷:۲۴

ابزاردقیق چیست؟

| چهارشنبه, ۶ مرداد ۱۳۹۵، ۰۱:۲۹ ب.ظ

تعریف ابزاردقیق

ابزاردقیق در بسیاری از صنایع تعاریف متفاوتی دارد اما برداشت ما از ابزاردقیق در صنعت نفت،پتروشیمی،صنایع غذایی،شیمیایی،سرامیک و آجر و صنایع پرکاربرد در کشورمان به این شرح می باشد ، علم و یا تخصصی که از زیر مجموعه های علم کنترل و برق بوده و به بررسی و اندازه گیری پارامترهایی همچون دما ، فشار ، فلو ، سطح سیالات ، مقادیر PH و غلظت گازها می پردازند.کاربرد ابزاردقیق بسیار و بسیار در پروسه های مختلف به چشم می خورد.شناخت سنسورها، ترانسمیترها، دستگاههای اندازه گیری و کنترل کننده ها  و انتخاب مناسب ترین تجهیزات در پروسه از وظایف مهندسین ابزاردقیق می باشد.شناخت تمام روشهای اندازه گیری دما ، اندازه گیری فشار ، اندازه گیری فلو ، اندازه گیری سطح سیالات شاید کار بسیار بیهوده ای باشد، زمانی شناخت و بررسی این موارد مهم می شود که هر کدام از روشها برای شرایط مختلف کاربرد دارد.

 

ابزاردقیق

شناخت تجهیزات ابزاردقیق

تمام تجهیزات بالا از جمله تجهیزاتی می باشند که در یک پروسه کنترلی از آنها استفاده می شود به بیان ساده تر ابزاردقیق و تجهیزات آن در تمام پروسه های کنترلی نقشی بر عهده دارند در به معرفی و تعریف تک تک آنها می پردازیم.

سنسورها :

در تعریف کلی سنسور به هر وسیله ای که قادر به اندازه گیری و تبدیل کمیت های فیزیکی به الکتریکی باشد گفته می شود، کمیت های فیزیکی میتوانند دما ، رطوبت ، فشار ، وزن ، حجم ،مغناطیس و… نام برد وظیفه یک سنسور دما اندازه گیری مقدار دما و تبدیل آن به سیگنال الکتریکی می باشد،دما یکی از پرمصرف ترین پارامترهای  مورد استفاده دز اتوماسیون صنعتی و ابزاردقیق می باشد.

ترانسمیترها:

ترانسمیترها به طور کلی به تجهیزاتی گفته می شود که عمل اندازه گیری(سنسور) ، تبدیل و تقویت سیگنال ها را در یک مجموعه انجام میدهند.ترانسمیترها از تجهیزاتی هستند که در پروسه های بزرگ صنعتی کاربرد زیادی دارند زیرا فاصله ترانسمیترها از اتاق های کنترل بسیار زیاد بوده و فقط استفاده از ترانسمیتر است که در این شرایط منطقی به نظر می رسد.امروزه کاربرد سیگنالهای آنالوگی همچون ۴-۲۰ میلی آمپر در صنایع بزرگ بسیار کم رنگ تر شده است و از خصوصیات ترانسمیترها خروجی های دیجیتال به صورت پروتکل های صنعتی می توان اشاره کرد.خروجی هایی همچون پروفیباس – اترنت – اترکت – مدباس – فیلدباس – کن و… در این تجهیزات پرکاربرد هستند.

ترانسدیوسرها:

ترانسدیوسر ها در واقع مبدل های سیگنال های خروجی سنسورها به سیگنال های استاندارد هستند برای مثال استفاده از یک ترموکوپل با خروجی هایی در حد میلی ولت در صنعت کاملا اشتباه بود لذا در این مواقع میتوان از مبدل ترموکوپل به سیگنال ۰ – ۱۰ ولت استفاده کرد.ترانسدیوسر ها در کل یک مبدل هستند ولی شما قادر به این نیستید که خودتان یک سنسور را به آن متصل کنید زیرا این اتفاق در داخل کمپانی ها می افتد.

نمایشگرها:

برای نمایش مقدار پارامترهای اندازه گیری شده تجهیزات ابزاردقیق باید از نمایشگرهایی که ورودی های انها استاندارد می باشد استفاده کرد برای مثال برای نمایش مقدار فشار یک سنسور و یا مقدار دمای اندازه گیری شده توسط سنسور از نمایشگرهایی باید استفاده کرد که همان سنسور را پشتیبانی کرده و یا ورودی های استانداردی همچون ۰-۱۰ ولت ، ۴-۲۰ میلی آمپر را پشتیبانی می کنند.

کنترلرها:

مرحله بعد از اندازه گیری کنترل می باشد،فرض کنید شما در یک پروسه قصد کنترل دمای یک مخزن آب را دارید المانها و تجهیزاتی که برای این کار نیاز دارید به شرح زیر می باشد: کنترلر،ترانسمیتر دما و کنترل ولو که میزان انرژی گرمایشی را کنترل نماید که این انرژی میتواند حرارت آتش و کنترل ولو وظیفه کنترل گاز ورودی و یا انرژی تامین کننده می تواند گرمای بخار باشد که کنترل ولو مقدار دبی عبور بخار را کنترل میکند.

در پروسه بالا شما باید دمای اندازه گیری شده را از ترانسمیتر دریافت نمایید و کنترلر وظیفه کنترل مقدار انرژی گرمایشی را دارد که با میزان باز و بسته شدن کنترل ولو مقدار گرمای مخزن را کنترل می نماید.

عنصر نهایی :

همانطور که از نامش مشخص است مرحله آخر هر پروسه را عنصر نهایی انجام میدهد(البته اگر پروسه کنترل باشد) که در پروسه های مختلف این عنصر نهایی متفاوت می باشد شاید در یک پروسه عنصر نهایی یک کنترل ولو باشد،در پروسه ای دیگر یک موتور الکتریکی باشد،در پروسه ای دیگر جک های نیوماتیک و هیدرولیکی باشد و… . عملگرها در واقع همان عنصر نهایی هستند.

  • موافقین ۰ مخالفین ۰
  • ۰۶ مرداد ۹۵ ، ۱۳:۲۹

ابزار دقیق Instrumentation

| چهارشنبه, ۶ مرداد ۱۳۹۵، ۰۱:۱۹ ب.ظ

در قسمت ابزار دقیق انواع ابزاردقیق مورد نیاز پروسه های صنعتی معرفی میگردد . ابزار دقیق در حقیقت زیر ساخت یک سیستم کنترل و اتوماسیون را تشکیل میدهند و شامل ابزاری نظیر : انواع کنترلر ، نشاندهنده ، ترانسمیتر، رکوردر و... میباشند که این ابزار وظیفه اندازه گیری ، انتقال ، نمایش ، ثبت و کنترل پارامترهای مهم فیزیکی نظیر دما ، فشار، فلو ، سطح مایعات و ... را در پروسه های صنعتی به شکلی دقیق بر دوش دارند. ابزار دقیق را میتوان به دو صورت دسته بندی کرد یکی از نظر نوع عملکرد این ابزار برای مثال ابزاری که عمل کنترل دما یا فشار و رطوبت و یا سطح را بر عهده دارند به کنترلر مشهورند و به همین ترتیب ابزار نمایش این مقادیر که به ایندیکیتور یا نمایشگر معروفند و ابزار انتقال اطلاعات مقادیر برای مثال فشار ، فلو ، دما ، و سطح به صورت سیگنال های استاندارد که ، ترانسمیتر یا منتقل کننده نامیده میشوند .

 

ابزاردقیق

 

ابزار دقیق را همچنین میتوان از نظر پارامتری که این ابزار بایستی عملیاتی بر روی آن انجام دهد دسته بندی کرد برای مثال بخشهای : ابزار دقیق مربوط به دما نظیر کنترلر دما ، ترانسمیتر دما و ترمومتر یا نمایشگر دما ، ابزار اندازه گیری و کنترل دقیق فشار ، فلومتر یا سنجش جریان سیالات و انتقال مقادیر فلو یا کنترل فلو ، ابزار سطح سنجی یا اندازه گیری سطح مواد درون مخازن و کنترل دقیق آنها و ابزار سرعت سنجی ، ابزار رطوبت سنجی و ....

در این وب سایت هر دو دسته بندی مد نظر قرار گرفته و در حوزه ابزار دقیق شما میتوانید ابتدا با توجه به پارامتر مورد کنترل و اندازه گیری و یا با توجه به انتظاری که از این ابزار دارید به سراغ دسته بندی مناسب رفته ابزار مورد نیاز را به صورت دقیق انتخاب کنید .

بخشها به ترتیب اهمیت پارامتر به
فشار یا پرشر : Pressure
دما یا تمپریچر : Temperature
سطح یا لول : Level
فلو یا جریان : Flow

رطوبت : Humidity

و از نظر عملکرد به

میتر یا اندازه گیر یا نمایشگر: Meter
کنترلر : Controller
نشاندهنده یا ایندیکتور : Indicator
ترانسمیتر یا انتقال دهنده : Transmitter
کنترل ولو یا شیر کنترل : Valve or Control Valve
کالیبراتور : Calibrator

کوردر یا دیتالاگر یا ثبات : Recorder Or Logger

طبقه بندی شده است .

اولین فاکتور در انتخاب ابزار دقیق همانگونه که از نامش متوجه میشویم دقیق (Accurate) بودن آن یا است این مفهوم با نام accuracy یا دقت معمولا به صورت درصدی از مقادیر خوانده شده یا کل رنج اندازه گیری ابزار به صورت درصد در اطلاعات فنی تجهیز می آیند . برای مثال یک فشار سنج در محدوده اندازه گیری 100 بار با دقت یک درصد فول اسکیل ( کل رنج اندازه گیری ) با دقت مثبت و منفی یک بار برای هر عدد اندازه گیری شده دقیق است .

در انتخاب ابزار دقیق فاکتورهای بسیاری موثر است نظیر تکرار پذیری و ...

  • موافقین ۰ مخالفین ۰
  • ۰۶ مرداد ۹۵ ، ۱۳:۱۹

 

 

مزایا

معایب

شتاب سنج

1.  نصب آسان

2.  پاسخ فرکانسی مطلوب در یک محدوده گسترده

3.  اندازه کوچک و وزن کم

4.  استحکام بالا و بدون قطعه متحرک

5.  قابلیت تحمل دماهای بالا (مستلزم طراحی خاص)

6.  سیگنال خروجی قوی در محدوده فرکانسهای بالا

1.    کالیبره کردن آن دشوار است

2.    هزینه تأمین بالا (گرانقیمت)

3.    نیاز به منبع تغذیه بیرونی

4.    نیاز به تطابق امپدانسی با دستگاه اندازه گیری

5.    بسیار حساس و نیازمند استفاده از فیلترینگ

سرعت سنج

1.    نصب آسان

2.    سیگنال خروجی قوی در محدوه فرکانسهای میانی

3.    قابلیت تحمل دماهای بالا (مستلزم طراحی خاص)

4.    عدم نیاز به منبع تغذیه بیرونی

1.      اندازه بزرگ و وزن بالا

2.      پاسخ فرکانسی نامناسب در محدوده فرکانسهای پایین

3.      دارای قطعات متحرک و در معرض فرسودگی تدریجی

4.      کالیبره کردن آن دشوار است

5.      حساسیت جانبی (حساسیت در غیر از جهت اندازه گیری) بالا در مواقعی که مقدار ارتعاشات بالاست

6.      حساس به میدانهای مغناطیسی موجود در محیط (مثلاً اطراف موتورهای الکتریکی فشار قوی)

جابجایی سنج

1.    اندازه گیری مستقیم حرکت شفت که معمولاً سر منشأ اصلی بسیاری از ارتعاشات است

2.    بدون نیاز به تماس با شفت و در نتیجه حذف مشکلات و خطاهای ناشی از محل تماس

3.    استحکام بالا و بدون قطعه متحرک

4.    قیمت مناسب

5.    قابل استفاده برای اندازه گیری سرعت دورانی و نیز زاویه فاز

6.    پاسخ فرکانسی مطلوب در فرکانسهای پایین

7.    اندازه کوچک

8.    قابلیت تحمل محیطهای گوناگون

9.    کالیبراسیون آن آسان است

10. خروجی قوی با امپدانس پایین

1.      بسیار حساس به انواع Run out شفت (مکانیکی و الکتریکی) و انواع خرابی سطحی (خراش، ...)

2.      حساس به جنس شفت

3.      نیاز به منبع تغذیه بیرونی

4.      نصب دشوار در برخی از مواقع (نصب آن نیاز به تمهیدات خاص دارد)

 

 

  • موافقین ۰ مخالفین ۰
  • ۰۳ مرداد ۹۵ ، ۲۰:۱۴